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Robust mouse tracking in complex environments
using neural networks
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The ability to track animals accurately is critical for behavioral experiments. For video-based
assays, this is often accomplished by manipulating environmental conditions to increase
contrast between the animal and the background in order to achieve proper foreground/
background detection (segmentation). Modifying environmental conditions for experimental
scalability opposes ethological relevance. The biobehavioral research community needs
methods to monitor behaviors over long periods of time, under dynamic environmental
conditions, and in animals that are genetically and behaviorally heterogeneous. To address
this need, we applied a state-of-the-art neural network-based tracker for single mice. We
compare three different neural network architectures across visually diverse mice and dif-
ferent environmental conditions. We find that an encoder-decoder segmentation neural
network achieves high accuracy and speed with minimal training data. Furthermore, we
provide a labeling interface, labeled training data, tuned hyperparameters, and a pretrained
network for the behavior and neuroscience communities.
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response to internal or external stimuli. It is hierarchical,

dynamic, and high dimensional, and is generally simplified
for analysis!:2. For instance, the rich locomotor movement per-
formed by a mouse that is captured in video is routinely
abstracted to either a simple point, a center of mass, or an ellipse
for analysis. In order to track mice well with current methods, the
experimental environment is simplified to obtain optimal contrast
between the mouse and background for proper segmentation.
Segmentation, a form of background subtraction, classifies pixels
belonging to mice from background in video and enables these
high level abstractions to be mathematically calculated. During
mouse behavioral assays, the arena background color is often
changed depending on the animal’s coat color, potentially altering
the behavior itself>=>. Current trends in tracking include a wide
variety of challenges to overcome?, including robustness to
environmental complexity, robustness to subject diversity,
tracking multiple subjects in the same environment, and preser-
ving identities for multiple subjects. While much of recent pro-
gress has been made on solving the problem of multiple subject
tracking®-8, little progress has been made on improving robust-
ness to environmental complexity and subject diversity?. Making
changes to the environment or subject appearance comes at a
development cost, as current video tracking technologies cannot
be applied in complex and dynamic environments or with
genetically heterogeneous animals without a high level of user
involvement, making both long-term experiements and large
experiments unfeasible.

We sought to overcome these difficulties by building a robust
next-generation mouse tracker that uses neural networks and
achieves high performance under complex and dynamic envir-
onmental conditions, is indifferent to coat color, and does not
require persistent supervision by the user. Convolutional neural
networks are computational models that are composed of mul-
tiple spatial processing layers that learn representations of data
with multiple levels of abstraction. These methods have drama-
tically improved the state-of-the-art in speech recognition, visual
object recognition, object detection, and many other domains
such as drug discovery and genomics!?. Neural networks have a
variety of possible applications for solving laboratory animal-
tracking problems including improving segmentation quality,
regressing posture parameters, predicting keypoint locations, and
preserving identities over time. Semantic segmentation, a pro-
blem recently solved using deep learning, provides generalization
power to dynamic environments where traditional background
subtraction approaches would fail. While many segmentation
structures are available each with their own set of advantages!l,
the most notable networks are FCN!2, SegNet!3, and U-Net!4,
Posture parameter regression is often realized by region-proposal
networks, notably solved by Faster rcnn!®. Instance segmentation
networks, which join the task of localization and segmentation,
include Mask r-cnnl!®, FCIS!7, and Deep Learned Instance
Metrics!8. Keypoint predictions, commonly applied to the human
pose estimation problem, allows tracking of individual keypoints.
The converged architecture for keypoint tracking is a stacked
hourglass'®, most recently implemented by DeepCut?® and
DeepLabCut?!. Identity preservation is an ever-growing field for
applications of neural networks, ranging from human face ver-
ification networks?2-23 to animal identity recognition®”-24. One of
the key advantages of neural networks is that once an efficient
network with suitable hyperparameters has been developed, it can
easily be extended to other tasks by simply adding appropriate
training data2®. Application of these approaches is often limited
as approaches often require annotated datasets with millions of
annotated examples to function. Thus, we sought to build a highly
generalizable solution for mouse tracking.

Behavior is primarily an output of the nervous system in

Current technologies restrict experimental paradigms from
tracking diverse mouse populations, such as the diversity outbred
mouse panel?®, due to poor performance on subject diversity. As
neuroscience and behavior moves into an era of big behavioral
data® and computational ethology?’, improved methods are
necessary that enable tracking animals in semi-natural and
dynamic environments over long periods of time. To address this
shortfall, we developed a robust scalable method of mouse
tracking in an open fleld using modern convolutional neural
network architecture. Our trained neural network is capable of
tracking all commonly used strains of mice—including mice with
different coat colors, body shapes, and behaviors—under multiple
experimental conditions using a simple learn by example
approach. Thus we present a scalable and robust solution that
allows tracking in diverse experimental conditions.

Results

Traditional single mouse tracking approaches. We first used
existing tracking methods to track 58 different mouse strains in
multiple environments, and found them inadequate for our large-
scale strain survey experiment (1845 videos, 1691 h). We tracked
all the videos in this experiment using both Ctrax?8, a modern
open-source tracking software package that uses background
subtraction and blob detection heuristics, and LimeLight (Acti-
metrics, Wilmette, IL), a commercially available tracking software
package that uses a proprietary tracking algorithm. Ctrax uses a
background subtraction algorithm to abstract a mouse on a per
frame basis to five metrics: major and minor axis, x and y location
of center of the mouse, and the direction of the animal?3.
LimeLight uses a single key-frame background model for seg-
mentation and detection, abstracting the mouse to a center of
mass using a proprietary algorithm. Other available tracking
software packages includes CADABRAZ%, EthoVision,
idTracker3!, idTracker.ai®, ToxTrac®, MiceProfiler’?, MOTR33,
Cleversys  TopScan  (http://cleversysinc.com/CleverSysInc/),
Autotyping?4, and Automated Rodent Tracker3°.

Our strain survey experiment includes videos of mice with
different genetic backgrounds causing expression of different coat
colors, including black, agouti, albino, gray, brown, nude, and
piebald (Fig. 1a, columns 1, 2, 3, and 4). We tracked all animals in
the same white-background open field apparatus. This yielded
good results for darker mice (black and agouti mice), but poor
results for lighter-colored (albino and gray mice) or piebald mice
(Fig. la, columns 1, 2, 3, and 4, Supplementary Movie 1).
Examples of ideal and actual tracking frames are shown for the
various coat colors (Fig. 1a, row 3 and 4 respectively).

We also carried out video analysis of behavior in challenging
environments including both 24-h experimental videos that
augmented our open field arena, and videos from the open field
experiment carried out as part of The Jackson Laboratory
KOMP2 (Knockout Mouse Phenotyping Project)3¢ Phenotyping
Center (Fig. la, column 5 and 6, respectively). In the 24-h
experiment, we collected data over multiple days in which mice
were housed in the open field with white paper bedding and food
cup. The mice were kept in the open field in this multiday data
collection paradigm, and continuous recording was carried out in
light and dark conditions using an infrared light source. The
bedding and food cups were moved by the mouse and the
imaging light source alternated between infrared and visible light
over the course of each day. The KOMP2 experiment uses a grid
of infrared beams to detect a mouses current location (https://
www.mousephenotype.org/impress/protocol/81/7).  Since the
floor of the arena is clear acrylic, the surface of the table on
which the arenas were placed shows through as dark gray. In
addition, one arena was placed on the junction between two
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Fig. 1 a A representation of the environments analyzed by our approaches. A black mouse in a white open field achieves high foreground-background
contrast and therefore actual tracking closely matches the ideal. Gray mice are visually similar to the arena walls and therefore often have their nose
removed while rearing on walls. Albino mice are similar to the background of the arena itself and are frequently not found during tracking. Piebald mice are
broken in half due to their patterned coat color. Placing a food cup into the arena causes tracking issues when the mouse climbs on top. Arenas with
reflective surfaces also produce errors with tracking algorithms. b We identify the reason for bad tracking to be poor segmentation. Testing a variety of
difficult frames with multiple algorithms from the background subtraction library, we do not resolve this segmentation issue. € Our objective tracking takes
the form of an ellipse description of a mouse. For clarity, we show cropped frames as input into the networks while the actual input is an unmarked full
frame. d The structure of the segmentation network architecture functions similar to classical tracking approaches in which the network predicts the
segmentation mask for the mouse and then fits an ellipse to the predicted mask. e The structure of the binned classification network architecture predicts a
heatmap of the most probable value for each ellipse-fit parameter. f The structure of the regression network architecture directly predicts the six

parameters to describe an ellipse for tracking

tables, leaving the joint visible. Further, the LED lights overhead
caused a very high glare unique to each arena (Supplementary
Movie 2). This KOMP2 program has collected over 5 years of
data using this system, and we wanted to carry out video-based
recording as an added analysis modality to detect gait affects that
cannot be identified by beam-break systems. Since environmental
alterations could affect the behavioral output and legacy data
interpretation, we could not alter the environment for optimal
video data collection. Instead, we added a camera on top of each
arena. Traditionally, contrast and reflection hurdles could be
overcome by changing the environment such that video data
collection is optimized for analysis. For instance, to track albino
mice, one can increase contrast by changing the background color
of the open field to black. However, the color of the environment
can effect the behavior of both mice and humans, and such
manipulations can potentially confound the experimental
results>*. Regardless, such solutions will not work for piebald
mice in a standard open field, or any mice in either the 24-h data
collection experiment or the KOMP2 arena.

Identifying source of tracking issues. We found that the com-
bination of mouse coat colors and environments were difficult to
handle with Ctrax (Supplementary Movie 1) and LimeLight
(Supplementary Movie 3). We carefully optimized and fine-tuned
Ctrax for each video (Methods) in each of the three experiments
and still found a substantial number frames with poor tracking
performance (Fig. 1a, row 4). The frequency of poor tracking
instances in an individual video increased as the environment
became less ideal for tracking. Furthermore, the distribution of
the errors was not random; for example, tracking was highly
inaccurate when mice were in the corners, near walls, or on food
cups (Fig. 1a, row 4), and less inaccurate when animals were in
the center (Supplementary Movie 1). While it is feasible to discard
poorly tracked frames, this can lead to biased sampling and
skewed biological interpretation.

We explored the cause of bad tracking across our experiments
and discovered that, in most cases, improper tracking was due to
poor segmentation of the mouse from the background. This
included both types of errors: Type I, instances when portions of
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the background are included as the foreground (e.g. shadows),
and Type II, instances when portions of the mouse are removed
from the foreground (e.g. albino mouse matching the background
color). Since Ctrax uses a single background model algorithm, we
tested whether other background model algorithms could
improve tracking results. We tested 26 different segmentation
algorithms®’ and discovered that each of these traditional
algorithms performs well under certain circumstances but still
fail (Fig. 1b), suggesting that there is not a general purpose
solution38. All currently available mouse tracking software relies
on background subtraction approaches (Supplementary Table 1).
Since all 26 background subtraction methods from the BGSLi-
brary failed in some circumstances, we postulate that our results
for Ctrax and LimeLight will hold true for these other
technologies. In sum, although many video tracking solutions
exist, none address the fundamental problem of mouse
segmentation appropriately and generally rely on environmental
optimization to achieve proper segmentation, therefore creating
potential confounds with respect to robust data sampling and
analysis. Thus, we could not overcome the fundamental issue of
proper mouse segmentation in order to achieve high-fidelity
mouse tracking with existing solutions.

A drawback in addition to the problem of inadequate mouse
segmentation was the time cost for fine-tuning Ctrax’s settings or
another background subtraction algorithm’s parameters. Adjust-
ing the tracking settings for each video added substantial time to
our workflow when analyzing thousands of videos. For example,
immobile sleeping mice in our 24-h experiment cannot be tracked
because the background model incorporates the mouse. Typical
supervision (Methods) would take an experienced user 5 min of
interaction for each hour of video to ensure high-quality tracking
results. While this level of user interaction is tractable for smaller
and more restricted experiments, large-scale and long-term
experiments are not tractable.

Proposed neural network solutions. We tested three primary
neural network architectures for solving this visual tracking
problem (Fig. 1d, e). Each approach attempted to describe the
location of the animal through six variables: x and y location of
the mouse in the matrix, major and minor axes of the mouse, and
the angle the head is facing (Fig. 1c). To avoid the discontinuity of
coterminal angles, the networks predict the sine and cosine of the
angle.

The first architecture is an encoder-decoder segmentation
network that predicts a foreground-background segmented
image from a given input frame (Fig. 1d, Methods). This network
predicts which pixels belong to a mouse, with the output being a
segmentation mask. After the network produces this segmented
image, we applied an ellipse-fitting algorithm for tracking
(Supplementary Note 1). Angle direction is selected through an
additional cardinal direction output from the network.

The second network architecture is a binned classification
network, whereby a probability distribution across a pre-defined
range of possible values is predicted for each of the six ellipse-fit
parameters (Fig. 1e, Methods). At a resolution of 1 pixel for the x-
coordinate location of the mouse, there are 480 possible x-values
(bins) to select from for a 480 x 480 px image. When the network
is run, the largest value is selected as the most probable value of
the corresponding parameter.

The third architecture is a regression network that predicts the
numerical ellipse values directly from the input image (Fig. 1f,
Methods). We tested a variety of currently available general
purpose feature encoders, and present data from the feature
encoder Resnet V2 with 200 convolutional layers, which achieved
the best-performing results for this architecture3.

Neural network training. To test the neural network archi-
tectures, we built a training dataset of 16,234 training images and
568 held-out validation images across multiple mouse strains and
experimental setups (Supplementary Note 2). We created an
OpenCV-based labeling interface for creating our training data
(Methods) that allows us to quickly annotate foreground and
background, and fit an ellipse (Supplementary Figure 1). This
annotating interface can be used to quickly generate annotated
training data in order to adapt any network to new experimental
conditions through transfer learning.

Our network architectures were built, trained, and tested in
Tensorflow v1.0, an open-source software library for designing
applications that use neural networks?’. Training benchmarks
presented were conducted on the Nvidia P100 GPU architecture.
We tuned the hyperparameters through several training itera-
tions. After the first training of networks, we observed that the
networks performed poorly under particular circumstances that
had not been included in the annotated data, including mid-
jump, odd postures, and urination in the arena. We identified and
incorporated these difficult frames into our training dataset to
further improve performance. A full description of the network
architecture definitions and training parameters are available
(Methods and Supplementary Table 2).

Neural network performance. Overall, training and validation
loss curves indicated that each of the three network architectures
trains to a performance with an average center location error
between 1 and 2 pixels (Fig. 2a). The encoder-decoder segmen-
tation architecture converged to a validation center location error
of 0.9 px (Fig. 2a—c). Surprisingly, we found the binned classifi-
cation network displayed unstable loss curves, indicating over-
fitting and poor generalization (Fig. 2b, e). The regression
architecture converged to a validation center location error of
1.2 px, showing a better training than validation performance
(Fig. 2a, b, d). We further investigated the performance of posture
predictions on the segmentation and regression networks. A
commonly used metric for this task is calculating the Intersection
over Union (IoU) score for a prediction relative to a ground truth
to identify the overlap. The encoder-decoder segmentation net-
work achieved a mean IoU score of 0.828 on validation while the
regression network achieved a mean IoU score of 0.743. While
both scores are considered acceptable, the encoder—decoder seg-
mentation network has a clear improvement on posture
abstraction.

The encoder-decoder segmentation architecture performs well
in both accuracy and computational efficiency, requiring an
average processing time of 5-6 ms per frame. Our video data
could be processed by this network at a rate of up to 200 frames
per second (fps) (6.7x real time) on a Nvidia P100, which is a
server-grade GPU.; and a rate of up to 125 fps (4.2x real time) on
a Nvidia TitanXP, a consumer-grade GPU. In comparison, Resnet
V2 200 incurs a substantially longer processing time per frame
(33.6ms on a Nvidia P100). Other pre-built general-purpose
networks#! achieve similar or worse performances at a tradeoff of
faster compute time. Thus, regression networks are an accurate
but computationally expensive solution for long-term video
analysis.

Training set comparisons. We also tested the minimum training
dataset size required to train the encoder-decoder segmentation
network, by randomly subsetting our training dataset to smaller
numbers of annotated images (10,000 to 500) and training the
network from scratch. We obtained good results from a network
trained with only 2500 annotated images, a task that takes
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Fig. 2 a-e Performance of our tested network architectures during trainings. a Training curves show comparable performance during trainings, independent
of network architecture. b Validation curves show different performance across the three network architectures. The segmentation network performs the
best. ¢ Performance increases for validation in our segmentation network architecture. d Performance decreases for validation in our regression network
architecture, but good generalization performance is maintained. e The binned classification network architecture becomes unstable at 55 epochs of
training, despite the training curve still improving performance. f Comparing our segmentation network architecture with a beam-break system, we observe
high Pearson’s correlation. Our network performs consistently, despite the chambers being visually different. We identify two videos that deviate from this
trend. g Neural network performs better than Ctrax when compared against human annotations. Points indicate annotated frames in a group; bars indicate
mean = standard deviation. h Neural network annotations overlap better than Ctrax when compared against human annotations. Ctrax performance on
KOMP?2 annotated data reveals systematic issue of posture predictions in highly reflective environments. Points indicate annotated frames in a group; bars
indicate mean * standard deviation. i Predictions from two approaches yield high agreement on environments with high contrast between the mouse and
background (Black, Gray, Piebald). As the segmentation problem becomes more computationally difficult, the relative error increases (Albino, 24 h,
KOMP2). Due to low activity in the 24-h setup, errors in tracking have greater influence on the total distance traveled. Points indicate individual videos in a
group; bars indicate mean tstandard deviation. j Relative standard deviation of the minor axis maintains high correlation when the mouse and environment
have high contrast (Black). When segmentation includes shadows, includes reflections, or removes portions of the mouse, the minor axis length is not
properly predicted and increases the relative standard deviations (Gray, Piebald, Albino, KOMP2). Points indicate individual videos in a group; bars indicate
mean * standard deviation

approximately 3 h to generate with our labeling interface (Sup- also compared this neural network-based tracking architecture
plementary Figure 2). with an independent modality of tracking, the KOMP2 beam-
Additionally, we tested the influence of inclusion for different break system (Fig. la, column 6). We tracked 2002 videos of
training data subsets. While a general network can be trained with  individual mice comprising 700h of video from the KOMP2
all data, slightly improved performance is obtained through experiment using the encoder-decoder segmentation neural
training models specific to the experimental environment network architecture and compared the results with the tracking
(Supplementary Tables 3 and 4). data obtained using the KOMP2 beam-break system (Fig. 2f).
These data comprised mice of 232 knockout lines on the C57BL/

6N]J background that were tested in 20-min open field assay in

Neural network comparison with traditional systems. We 2016 and 2017. Since each KOMP2 arena has slightly different
evaluated the quality of the encoder-decoder segmentation neural ~ background due to the transparent and reflective walls, we
network tracking architecture by inferring entire videos from compared tracking performances of the two approaches for each
mice with disparate coat colors and data collection environments  of the eight testing arenas used in the 2016 and 2017 KOMP2
(Fig. 1a) and visually evaluating the quality of the tracking. We  open-field assays (Fig. 2f, colors shows arena), and compared
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tracking performances for all the arenas combined (Fig. 2f, black
line). We observed a very high correlation between the total
distance traveled in the open field as measured by the two
approaches across all eight KOMP2 testing arenas (R = 96.9%,
Fig. 2f). We observed two animals with high discordance from
this trend (Fig. 2f, red arrows). Observation of the video showed
odd behaviors for both animals, with a waddle gait in one and a
hunched posture in the other (Supplementary Movie 2). We
postulate that these behaviors led to an erroneously high number
of beam breaks in the beam-break system. This example high-
lights an important advantage of the neural network, as it is
unaffected by the behavior of the animal.

We then compared the performance of our trained segmenta-
tion neural network with the performance of Ctrax across a broad
selection of videos from the various testing environments and
coat colors previously tracked using Ctrax and LimeLight
(Fig. la). We wish to emphasize that we compared the
performance of our network with that of Ctrax because Ctrax is
one of the best conventional tracking software packages that
allows fine tuning of the many tracking settings, is open source,
and provides user support. Given the results with the 26
background subtraction approaches (Fig. 1b), we expected similar
or worse performances from other tracking systems. We hand
annotated 7200 ground truth test frames across six videos with
one animal per group (Fig. 1a). Each ground truth was annotated
at 1 s intervals, achieving a 20-min span of activity per video. We
compared the predictions generated from Ctrax and our trained
encoder—-decoder segmentation neural network. Videos in which
the mouse was immobile for a long duration and incorporated
into Ctrax’s background model were manually corrected. We
calculated the center hypotenuse error and found that our neural
network produced significantly better prediction accuracies across
increasingly difficult environments (Fig. 2g, Supplementary
Note 3, Supplementary Table 5). Even though the neural network
has never been trained with images of annotated piebald coat
color mice, the network has generalized to track these mice with
better accuracy than Ctrax. We observed improved IoU
performance using the neural network over Ctrax for all
environmental groups except gray mice, where performance only
reduced the standard deviation (Fig. 2h). Surprisingly, in the
KOMP2 setup, Ctrax’s performance substantially dropped
compared to the other environments. This performance drop is
due to the high occurrence of reflections and non-uniform
lighting, factors known to be difficult for Ctrax’s algorithm. While
the x—y error seems reasonable for Ctrax in the KOMP2 setup,
Ctrax is unable to adequately abstract the posture of the mouse to
an accurate ellipse, as shown by a mean IoU of 0.37.

While these errors may appear insignificant for tracking, we
analyzed more videos at higher temporal resolution to further
investigate how these differences impact behavioral metrics. We
tracked 72 videos, broken into six groups (Fig. la) with 12
animals per group, with both our trained encoder-decoder
segmentation neural network and Ctrax. We calculated a
cumulative relative error of total distance traveled between Ctrax
and our neural network (Fig. 2i). Specifically, for every minute in
the video, we compared the distance-traveled prediction of the
neural network with that of Ctrax. Tracking for black, gray, and
piebald mice in the white-background open-field apparatus
showed errors less than 4%; however, higher levels of error were
seen in albino mice in the open-field arena with a white floor
(14%), black mice in the 24-h arena (27%), and black mice in the
KOMP?2 testing arena (10%) (Fig. 2i, Supplementary Movie 1).
Despite only a minor difference in center location error for albino
mice (Fig. 2g, Ctrax center error mean of 3.1 px and Neural
Network center error mean of 1.1 px), the two methods disagree
greatly for behavioral metrics (Fig. 2i, 4 of 12 videos greater than

20% disagreement). Thus, we could not adequately track albino
mice in the open-field arena with a white floor, black mice in the
24-h arena, or black mice in the KOMP2 testing arena without
the neural network tracker.

We also observed, using Ctrax, that when foreground
segmentation prediction is incorrect, such as when shadows are
included in the prediction, the ellipse fit does not correctly
represent the posture of the mouse (Supplementary Movie 1). In
these cases, even though the center of mass tracking was
acceptable, the ellipse fit itself was highly variable. Modern
machine learning software for behavior recognition, such as the
Janelia Automatic Animal Behavior Annotator (JAABA)#2, utilize
the time series of ellipse-fit tracking values for classification of
behaviors. When tracking is accurate, the relative standard
deviation of the minor axis shows the least variance across all
sizes of laboratory mice, as the width of an individual mouse
remains similar through a wide range of postures expressed in
behavioral assays. We observed a higher variation with Ctrax for
gray and piebald mice in the white open field arena (Fig. 2j) even
though there is low cumulative relative error of total distance
traveled (Fig. 2i). This increased variance in minor axis observed
in Ctrax is due to instability of tracking caused by poor
segmentation, as suggested by IoU on ground truth labels
(Fig. 2h). This inaccurate posture estimation adversely affects
automated behavior system predictions.

Large-scale experiments. Having established the encoder-decoder
segmentation neural network as a highly accurate tracker, we
tested its performance using two large behavioral experiments. For
the first experiment, we generated white-surfaced open-field video
data with 1845 mice, including 58 strains of mice including mice
with diverse coat colors, piebald mice, nude mice, and obese mice,
and covering a total of 1691 h (Fig. 3a). This dataset consists of 47
inbred strains and 11 isogenic F1 strains and is the largest open-
field dataset generated, based on the data in the Mouse Phenome
Database?3. Using a single trained network, we were able to track
all mice with high accuracy. Our network achieved strong gen-
eralization, being able to track a broad spectrum of mouse coat
colors and body shapes without requiring additional frame
annotations (Fig. 3b). We visually checked mice from a majority of
the strains for fidelity of tracking and observed excellent perfor-
mance. These results are compared with three other open-field
activity phenotype datasets, including Tarantino (MPD 50601),
Pletcher (MPD 36007), and Wiltshire (MPD 21401). The Tar-
antino dataset** includes 37 strains in a 10-min open field with
only females. The Pletcher dataset®> includes 31 strains in a
10-min open field with only males. The Wiltshire dataset includes
37 strains in a 10-min open field with both sexes. The activity
phenotypes that we observed are concordant with previously
published datasets of mouse open-field behavior (Supplementary
Figure 3).

For the second dataset, we tracked 24-h video data collected for
four C57BL/6] and two BTBR T+ ltpr3t/J] mice (Fig. 1a, column
5). These mice were housed with bedding and a food cup over
multiple days during which the food changed location and under
12:12 light-dark conditions (Methods). We tracked activity across
all animals under these conditions using our neural network and
observed very good performance under both light and dark
conditions (Fig. 3c). As expected, we observed daily activity
rhythm with high levels of locomotor activity during the dark
phase.

Environmental condition testing. In addition to these two large-
scale experiments, we also conducted two experiments to show-
case the robustness of our system over existing tracking solutions.
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Fig. 3 Highly scalable tracking with a single neural network. a A large strain survey showing genetically diverse animals tracked with our encoder-decoder
segmentation network. In total, 1845 animals across 58 inbred and F1 isogenic strains, totaling 1691 h of video, were processed by a single trained neural
network. Total distance traveled in a 55-min open field assay is shown. Points indicate individuals in a strain; box indicates mean tstandard deviation. Two
reference mouse strains are shown in bold, C57BL/6J and C57BL/6NJ. b Representation of visual variation for track-able mice in the strain survey. Our
network was trained on a small subset of actual variation in visual appearance (Image credit: JAX Creative). ¢ Daily activity rhythms observed in six animals
continuously tracked over 4 days in a dynamic environment with our encoder-decoder neural network. Points indicate distance traveled in 10 min intervals.
Boxes indicate quantiles for 4-h intervals. Light bar and gray background indicate light-dark cycle

The first experiment observes an albino mouse in a white arena  Figure 4a), only being able to detect a mouse 46.3% of the time
with changing lighting conditions (Supplementary Movie 4). (Supplementary Figure 4a, left bar plot). Even when this detection
Single background model-based tracking solutions are insufficient rate is ignored, about 10% of the comparible frames expose
for adequately tracking in this experiment (Supplementary shadow-related issues for Ctrax in this suboptimal environment
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(Supplementary Figure 4a, right histogram). Our neural network
solution, due to augmentation during training, requires no newly
annotated frames to successfully track in this experiment (Sup-
plementary Figure 4a, example frames).

The second experiment adds large moveable objects to the
arena for the mouse to investigate and interact (Supplementary
Movie 5). This simulates a dynamic environment where non-
mouse objects are also moving. A single background model
tracking solutions is insufficient for tracking this experiment
(Supplementary Figure 4b), often confusing the moving objects as
other mice (Supplementary Figure 4b, example frames). In this
video, where the mouse happens to seldomly interact with the
objects, about 10% of the frames contain tracking swaps between
sphere and the mouse (Supplementary Figure 4b, right histo-
gram). A neural network, trained with only 500 annotations from
separate videos, is still able to generalize well for tracking mice
interacting with these spheres in arbitrary configurations
(Supplementary Movie 5).

Discussion

Video-based tracking of animals in complex environments has
been a long-standing challenge in the field of animal behavior!.
Current animal-tracking systems do not address the fundamental
issue of animal segmentation and rely heavily on visual contrast
between the foreground and background for accurate tracking. As
a result, the experimenter must restrict the environment to
achieve optimal results. Here we describe a modern neural
network-based tracker that addresses a fundamental issue in
laboratory animal tracking—environment restrictions for fore-
ground and background segmentation. We test three different
architectures and find that an encoder-decoder segmentation
network architecture achieves the highest level of accuracy and
functions at a high speed (over 6x real time). Furthermore, we
provide an annotating interface that allows the user to train a new
network for their specific environment by annotating as few as
2500 images, which takes approximately 3h. We compare our
network to two existing solutions and find that it vastly outper-
forms them in complex environments and expect similar results
with systems that utilize background subtraction approaches. In
fact, when we tested 26 different background subtraction methods
we discovered that each failed under certain circumstances.
However, a single neural network architecture functions for all
coat colors of mice under multiple environments. We also show
that our neural network approach is robust to dynamic experi-
mental setups that would cause traditional approaches to fail. Our
machine learning approach enables long-term tracking under
dynamic environmental conditions with minimal user input, thus
establishing the basis of the next generation of tracking archi-
tecture for behavioral research.

Our approach also exhibits good generalization capabilities. A
trained model can generalize to work on new environments,
perspectives, and mice as long as the task is visually similar.
This is apparent by observing good tracking performance on
piebald mice without having any annotations shown during
training (Supplementary Table 5) and the dynamic lighting
experiment (Supplementary Figure 4a). However, to ensure
good performance on data, we recommend testing sample data
and annotating new frames accordingly. While we observe
good performance with 2500 annotated frames, transfer learning
from a model pretrained on our annotated dataset can reduce
this cost.

Our proposed solution specifically addresses needs that have
been identified by machine learning experts in the field of animal
tracking®>—development of technologies that are simple to use,
can track animals without markings, function with diverse range

of animal visual appearance, function in diverse natural envir-
onments, minimizes data handling, utilizes a single image point
(single camera), and can automate behavior detection. The work
presented here is able to track a wide variety of mice with varying
coat colors, body shapes, and sizes and thus can function with a
very diverse range of animal appearance. We are also able to track
single mice in a wide variety of environmental conditons over
long periods of time with minimal supervision using a single
video perspective. Furthermore our methods can be integrated
into other systems to address simplicity, data handling, and
behavior detection. The ability to track diverse range of mice
under diverse environmental condiditons are critical for etholo-
gically relevant assays inside and outside the laboratory. These
improvements enable complex behavioral experimentation with
advanced mouse populations such as Diversity Outcross (DO)
and Collaborative Cross mice2°. DO mice are designed to model
genetic diversity seen in human populations and characteristically
have highly diverse visual appearance (body size, coat color) and
behavioral repertoires. Thus, we propose a solution that address
key deficits in current animal-tracking technology and will enable
large-scale behavioral analysis under varied environmental
conditions.

Methods

Experimental arenas. Open field arena: Our open field arena measures 52 cm by
52 cm by 23 cm. The floor is white PVC plastic and the walls are gray PVC plastic.
To aid in cleaning maintenance, a white 2.54 cm chamfer was added to all the inner
edges. Illumination is provided by an LED ring light (Model: F&V R300). The ring
light was calibrated to produce 600 lux of light in each of our 24 arenas.

24-h monitoring open field arena: We augmented six of our open field arenas for
multiple day testing. We set our overhead LED lighting to a standard 12:12
light-dark cycle. ALPHA-dri was placed into the arena for bedding. To provide
food and water, a single Diet Gel 76A food cup was placed in the arena. This
nutritional source was monitored and replaced when depleted. Each arena was
illuminated at 250 lux during the day and <5 lux during the night. For recording
videos during the night, additional IR LED (940 nm) lighting was added.

KOMP2 open field arena: In addition to our custom arenas, we also
benchmarked our approach on a commercially available system. The Accuscan
Versamax Activity Monitoring Cages is constructed using clear plastic walls. As
such, visual tracking becomes very difficult due to the consequent reflections. The
cage measures 42 cm by 42 cm by 31 cm. Lighting for this arena was via LED
illumination at 100-200 lux.

We use the beam-break system as a commercial turn-key system that is well
established in the specific field for tracking rodents in empty environments. The
tracking system used by KOMP2 at JAX is sold by Omnitech Electronics Inc.
(http://omnitech-usa.com/product/Open-Field---Locomotor-Activity/1010) and is
described in detail a the International Mouse Phenotyping Center (https://www.
mousephenotype.org/impress/protocol/81/7). Briefly, this system creates a grid of
IR beams that are approximately 1 inch apart in the x, y direction and a second set
of beams on the z-axis to detect rearing. The location and speed of mouse
movement is tracked by the grid location of interrupted beams.

Lighting test in open field arena. For the lighting test, we used our open field
arena. We disabled the camera target brightness during recording and manually
adjusted the LED illumination lamps to a variety of lighting conditions between
300 lux and 1000 lux. This corresponds to greyscale range of values of 140-250 for
the center color (normally white-balanced to 225) and a wall greyscale range of
75-150 (normally white-balanced to 132). A single NOD/ShiLt] mouse was placed
in the arena and recorded for 10 min.

Sphere test in open field arena. For the move-able sphere test, we used our open
field arena and added reflective spheres of varying sizes into the arena with the
mouse. The spheres are 20 swg 304 stainless steel hollow spheres measuring 6, 8,
and 10 cm diameter. These spheres are light enough for a mouse to move them
around with ease. Two to five spheres were placed into the arena at random
starting locations for recording. We recorded six videos, one of which was held out
for validation. Each video was 40 min. One DBA/2] mouse was placed in each
arena for recording.

Video acquisition. All data were acquired using the same imaging equipment.
Data were acquired at 640 x 480 px resolution, 8-bit monochrome depth, and

30 fps using Sentech cameras (Model: STC-MB33USB) and Computar lenses
(Model: T3Z2910CS-IR). Exposure time and gain were controlled digitally using a
target brightness of 190/255. Aperture was adjusted to its widest so that lower
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analog gains were used to achieve the target brightness. This in turn reduced
amplification of baseline noise. Files were saved temporarily on a local hard drive
using the “raw video” codec and “pal8” pixel format. Our typical assays run for 2h,
yielding a raw video file of approximately 50 GB. Overnight, we use FFmpeg
software (https://www.ffmpeg.org/) to apply a 480 x 480 px crop, de-noise filter,
and compress using the mpeg4 codec (quality set to max) using the YUV420P pixel
format, which yields a compressed video size of approximately 600 MB.

One camera and lens was mounted approximately 100 cm above each arena to
alleviate perspective distortion. Zoom and focus were set manually to achieve a
zoom of 8 px/cm. This resolution both minimizes the unused pixels on our arena
border and yields approximately 800 pixels area per mouse. Although the KOMP2
arena is slightly smaller, the same zoom of 8px/cm target was utilized.

Ctrax supervision protocol. Ctrax contains a variety of settings to enable opti-
mization of tracking?8. The authors of this software strongly recommend, first and
formost, ensuring that the arena is set up under specific criteria to ensure good
tracking. In most of our tests, we intentionally use an environment in which Ctrax
is not designed to perform well (e.g., albino mice on a white background). That
being said, with well-tuned parameters, a good performance is still achievable.
However, with a large number of settings to manipulate, Ctrax can easily require
substantial time to achieve a good tracking performance. Here, we describe our
protocol for setting up Ctrax for tracking mice in our environments.

First, we create a background model. The core of Ctrax is based on background
subtraction, and thus a robust background model is essential for functionality.
Models function optimally when the mouse is moving. To create the background
model, we seek to a segment of the video in which the mouse is clearly moving, and
we sample frames from that section. This ensures that the mouse is not included in
the background model. This approach improves Ctrax’s tracking performance on
our 24-h data, as the mouse moves infrequently due to sleeping and would typically
be incorporated into the background model.

The second step is to set the settings for background subtraction. Here, we use
the background brightness normalization method with a std range of 254.9-255.0.
The thresholds applied to segment out the mouse are tuned on a per-video basis, as
slight changes in exposure and coat color will influence the performance. To fine-
tune these thresholds, we apply starting values based on previous videos analyzed
and adjust values by checking multiple portions of the video. Every video is
inspected for proper segmentation on difficult frames, such as the mouse rearing
on the wall. Additionally, we apply morphological filtering to both remove minor
noise in the environment as well as remove the tails of mice for fitting an ellipse.
We use an opening radius of 4 and a closing radius of 5.

Lastly, we manually set a variety of tracking parameters that Ctrax enables to
ensure that the observations are in fact mice. For optimal time efficiency, these
parameters were tuned well once and then used for all other mice tracked. If a
video was performing noticeably poorly, the general settings were tweaked to
improve performance. For the shape parameters, we computed bounds based on
two standard deviations from an individual black mouse video. We lowered the
minimum values further because we expected that certain mice would perform
poorly on the segmentation step. This allows Ctrax to still find a good location of
the mouse despite not being able to segment the entire mouse. This approach
functions well, as all of our setups have the same zoom of 8, and the mice tested are
generally the same shape. Motion settings are very lenient, because our
experimental setup tracks only one mouse in the arena at a time. Under the
observation parameters, we primarily utilize the “Min Area Ignore” setting to filter
out detections larger than 2500 pixels. Under the hindsight tab, we use the “Fix
Spurious Detections” setting to remove detections with a length shorter than 500
frames.

Training set annotation. We annotated our own training data using custom
software that was written to accommodate obtaining the necessary labels. We
used the OpenCV library (https://opencv.org/) to create an interactive
watershed-based segmentation and contour-based ellipse-fit. Using the software
GUI we developed, the user left-clicks to mark points as the foreground (a
mouse) and right-clicks to label other points as the background (Supplementary
Figure 1). Upon a keystroke, the watershed algorithm is executed to predict a
segmentation and ellipse. If users need to make edits to the predicted segmen-
tation and ellipse, they can simply mark additional areas and run the watershed
again. When the predictions are of sufficiently high quality, users then select the
direction of the ellipse. They do this by selecting one of four cardinal directions:
up, down, left, and right. Since the exact angle is selected by the ellipse-fitting
algorithm, users need only to identify the direction +90°. Once a direction is
selected, all the relevant data are saved to disk and users are presented with a
new frame to label. Full details on the software controls can be found in the
software documentation.

The objective of our annotated dataset is to identify good ellipse-fit tracking
data for mice. While labeling data, we optimized the ellipse-fit such that the ellipse
was centered on the mouse’s torso with the major axis edge approximately
touching the nose of the mouse. Frequently, the tail was removed from the
segmentation mask to provide a better ellipse-fit. For training networks for
inference, we created three annotated training sets. Each training dataset includes a

reference frame (input), segmentation mask, and ellipse-fit. Each training set was
generated to track mice in a different environmental setup.

Neural network model description. The neural networks we trained fall into three
categories: segmentation, regression, and binning. Our tested models can be viewed
visually in Fig. 1d-f.

The first network architecture is modeled after a typical encoder-decoder
structure for segmentation (Fig. 1d). The primary structure of this architecture
starts with a feature encoder, which abstracts the input image down into a small-
spatial-resolution set of features. The encdoded features are then passed to both
a feature decoder, which converts this set of features back into the same shape as
the original input image, and three fully connected layers to predict, which
cardinal direction the ellipse is facing. We trained the feature decoder to produce
a foreground-background segmented image. The first half of the network
(encoder) utilizes 2D convolutional layers followed by batch normalization, a
ReLu activation, and 2D max pooling layers. We use a starting filter size of 8 that
doubles after every pooling layer. The kernels used are of shape 5x 5 for 2D
convolution layers and 2 x 2 for max pooling layers. Our input is of shape 480 x
480 x 1 and after six of these repeated layers, the resulting shape is 15 x 15 x 128.
We apply another 2D convolutional layer (kernel 5 x 5, 2x filters) followed by a
2D max pool with a different kernel of 3 x 3 and stride of 3. One final 2D
convolutional layer is applied to yield our feature bottleneck with a shape of 5 x
5 x 512. This feature bottleneck is then passed to both the segmentation decoder
and angle predictor. The segmentation decoder reverses the encoder using
strided transpose 2D convolutional layers and carries over pre-downsampled
activations through summation junctions. It should be noted that this decoder
does not utilize ReLu activations. After the layers return to the 480 x 480 x
8 shape, we apply one additional convolution, with a kernel size of 1x 1, to
merge the depth into two images: background prediction and foreground
prediction. We apply a softmax function across this depth. From the feature
bottleneck, we also create a prediction for angle prediction. We achieve this by
applying two 2D convolution layers with batch normalization and ReLu
activations (kernel size 5 x 5, feature depths 128 and 64). From here, we flatten
and use one fully connected layer to yield a shape of four neurons, which
function to predict the quadrant in which the mouse’s head is facing. Since the
angle is predicted by the mask, we need only to select the correct direction
(+180°). The four possible directions that the network can select are 45-135,
135-225, 225-315, and 315-45° on a polar coordinate grid. These boundaries
were selected to avoid discontinuities in angle prediction. Two losses are used, a
softmax cross entropy for segmentation mask prediction and a second softmax
cross entropy for cardinal angle prediction. During training, these losses are
summed.

The second network architecture is a binned regression approach (Fig. le).
Instead of predicting the parameters directly, the network instead selects the most
probable value from a selection of binned possible values. The major difference
between this structure and a regression structure is that the binned regression
network training relies on a cross entropy loss function whereas a regression
network relies on a mean squared error loss function. Due to memory limitations,
we tested only custom VGG-like networks with reduced feature dimensions. This
network architecture begins with a feature encoder that abstracts the input image
down into a small-spatial-resolution set of features. The encoded features are
flattened and connected to additional fully connected layers whose output shape is
determined by the desired resolution of the output. Our best-performing network
is structured with two 2D convolutional layers followed by a 2D max pooling layer.
The kernels used are of shape 3 x 3 for 2D convolutional layers and 2 x 2 for 2D
max pooling layers. We start with a filter depth of 16 and double after every 2D
max pool layer. This two convolutional plus max pool sequence is repeated five
times to yield a shape of 15 x 15 x 256. This layer is flattened and connected to a
fully connected layer for each output ellipse-fit parameter. The shape of each
output is dictated by the desired resolution and range of the prediction. Each
desired output parameter is realized as an independent set of trainable fully
connected layers connected to the encoded features. For testing purposes, we
observed only the center location and trained with a range of the entire image
(0-480). Additional outputs, such as angle prediction, could simply be added as
additional output vectors. Training this network uses a categorical cross entropy
loss for each parameter prediction. During training, all parameter losses are
summed.

The third network architecture is modeled after a typical regression predictor
structure (Fig. 1f). While the majority of regression predictors realize the
solution through a bounding box, an ellipse simply adds one additional
parameter: the angle of the mouse’s head direction. Since multiple angles can be
coternimal with discontinuous equivalence at 360° and 0°, we transform the
angle parameter into its sine and cosine components. This yields a total of six
parameters regressed from the network. The network architecture begins with a
feature encoder that abstracts the input down into a small spatial resolution.
These encoded features are then flattened and connected to fully connected
layers to produce an output shape of 6, the number of values that we ask the
network to predict to fit an ellipse. We tested a wide variety of pre-built feature
detectors including Resnet V2 50, Resnet V2 101, Resnet V2 200, Inception V3,
Inception V4, VGG, and Alexnet. In addition to these pre-built feature detectors,
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we also surveyed a wide array of custom networks. Of these general purpose
feature encoders and custom networks, Resnet V2 200 performed the best.
Training this network uses a mean squared (L2) loss where the squared
difference between prediction and ground truth are calculated.

Neural network training. This section describes all of the procedures pertaining to
training our neural network models. The three procedures described here are
training set augmentation, training hyperparameters, and a benchmark for training
set size.

Training set augmentation has been an important aspect of training neural
networks since Alexnet#0. We utilize a handful of training set augmentation
approaches to achieve good regularization performance. Since our data are from a
birds-eye view, it is straightforward to apply horizontal, vertical, and diagonal
reflections for an immediate 8x increase in our equivalent training set size.
Additionally, we apply small rotations and translations for the entire frame.
Rotation and translation augmentation values are sampled from a uniform
distribution. Finally, we apply noise, brightness, and contrast augmentations to the
frame. The random values used for noise, brightness, and contrast augmentations
are sampled from a normal distribution.

Hyperparameters, such as training learn rate and batch size, were selected
independently for each network architecture trained. While larger networks, such
as Resnet V2 200, can run into memory limitations for batch sizes at an input size
of 480 x 480, good learning rate and batch size were experimentally identified using
a grid search approach?’. Supplementary Table 2 summarizes all the
hyperparameters selected for training these network architectures.

We also benchmarked the influence of training set size on network
generalization in order to determine the approximate amount of annotated training
data required for good network performance of the encoder—decoder segmentation
network architecture (Supplementary Figure 2). We tested this benchmark by
shuffling and randomly sampling a subset of the training set. Each subsampled
training set was trained and compared to an identical validation set. While the
training curves appear indistinguishable, the validation curves trained with fewer
than 2500 training annotations diverge from the group. This suggests that the
training set is no longer large enough to allow the network to generalize well. While
the exact number of training samples will ultimately rely on the difficulty of the
visual problem, a recommended starting point would be around 2500 training
annotations.

Finally, we compare network performance on the training and validation
datasets based upon which training annotations were included during the training
process (Supplementary Tables 3 and 4). We train five separate models, three of
which are used in the main text figures. The Full Model utilizes all available
annotations across our three datasets (Supplementary Note 2). The No Difficult
Frames Model excludes only the “difficult frame” annotations to show performance
changes when annotating additional frames found to be incorrect outside the
annotated dataset. The remaining models are trained only on the subset of
performance metrics available. We observe slightly better performance by only
training on a single dataset grouping when compared to a model trained on all
annotations. Our annotated test data in Supplementary Table 5 suggest that either
approach (training 1 model on all annotations or multiple models grouped by
environment) outperforms Ctrax.

Animals used. All animals were obtained from The Jackson Laboratory pro-
duction colonies. Adult mice aged 8 to 14 weeks were behaviorally tested in
accordance with approved protocols from The Jackson Laboratory Institutional
Animal Care and Use Committee guidelines. Open field behavioral assays were
carried out as previously described*S. Briefly, group-housed mice were weighed
and allowed to acclimate in the testing room for 30-45 min before the start of
video recording. Data from the first 55 min of activity are presented here. Where
available, eight males and eight females were tested from each inbred strain and
F1 isogenic strain.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability

The neural network training code used in this study is available in a github repository
https://github.com/KumarLabJax/MouseTracking. The annotation tool code as well as
supporting scripts is available in a github repository https://github.com/KumarLabJax/
MouseTrackingExtras.

Data availability

Neural network training sets used in this study are available on the kumarlab website
https://www.kumarlab.org/2019/02/12/single-mouse-tracking-annotated-dataset/.
Pretrained neural networks used in this study are available on the kumarlab website
https://www.kumarlab.org/2019/02/12/pre-trained-single-mouse-tracking-neural-
network-models/. Strain survey distance traveled data used in this study are available in
MPD.
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